# Precise measurements of n- $\gamma$ angular correlations in inelastic scattering of 14 MeV neutrons on nuclei

N.A. Fedorov, T.Yu. Tretyakova, Yu.N. Kopatch, D.N. Grozdanov,
V.M. Bystritsky, I.N. Ruskov, V.R. Skoy, N.I. Zamyatin, W. Dongming,
F.A. Aliev, K. Hramko, A. Kumar, A. Gandhi, S. Dabylova,
E.P. Bogolubov, Yu.N. Barmakov and «TANGRA» collaboration



#### ISINN-2018

An investigation of the angular and energy distributions of gamma rays from the inelastic scattering of 14 MeV neutrons on a number of light nuclei was performed in the frame of the project TANGRA (TAgged Neutron and Gamma RAys) at JINR Frank Laboratory of Neutron Physics.

### Motivation

- There are some discrepancies between available experimental data
- Investigation of possible differences between neutron and proton scattering
- Angular anisotropy of the emitted gamma-rays has to be taken into account if the tagged neutron method is used for elemental analysis

### The Idea of the "tagged" neutron method



- $d + t \rightarrow \alpha + n + 17.6 \text{MeV}$
- In the center-of-momentum frame n and α fly in opposit directions.
- Minimal angle between α and n in the lab frame about 173<sup>o</sup> at deutron energy about 100 keV.
- For registration of the  $\alpha$ -particles 64-pixel silicon detector is used. The dimensions of a single pixel are  $6 \times 6$ mm. The  $\alpha$ -particle registration allows one to determine the directon of neutron's momentum.

### The TANGRA setup



- 1. Neutron generator ING-27
- 2. Sample
- 3. Sample's support
- 4. ING-27 holder
- 5. Gamma-detector holder
- BGO gamma-detector, a part of the «Romasha» multi-detector system

### Sample size and shape optimization

- Neutron generator ING-27 produce 64 tagged beams so there are 1152 pixel-detector combinations
- We want use as many beams as possible to increase number of measurement points
- In the other hand, if we want to increase number of the used beams we have to increase the sample sizes
- If we increase the sample's sizes, we will lose gammas. Moreover observable angular distribution strictly depends on the sample's shape.
   We have to choose optimal geometry of the sample

Our procedure for sample's shape optimization consists 3 steps:

- Neutron spartial distribution measurement
- Monte-Carlo simulation of our experimental setup with different sample's sizes and shapes
- Oiscussion

### Step 1: Beam profile measurement



- Information about space distribution of the tagged beams is very important for the data processing.
- A silicon charged particle strip detector was used for beam profile measurement.
- Neutrons were registered by reactions  ${}^{28}\text{Si}(n, \alpha)$  and  ${}^{28}\text{Si}(n, p)$ .

### Step 1: Beam profile measurement



### Step 1: Beam profile measurement

| y <mark>8</mark><br>17                 |                 |           | <b>.</b>        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
|----------------------------------------|-----------------|-----------|-----------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| y7<br>21                               |                 |           |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| <u>у</u> р<br>18                       |                 |           |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| y <mark>5</mark><br>22                 |                 |           |                 |          | Here 2<br>Here 2 | The second secon | THE P           |
| y 4<br>19                              |                 |           |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| <u>y</u> 3<br>23                       |                 |           | 57              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |
|                                        |                 |           |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| y <mark>1</mark><br>24 <u>x1</u><br>25 | <u>x2</u><br>29 | <u>x3</u> | <u>x4</u><br>30 | ×5<br>27 | <u>×6</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | x7<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>x8</u><br>32 |

- Geant4 includes nuclear data libraries with cross-sections for different nuclear processes
- Geant4 also includes predefined  $\frac{d\sigma}{d\Omega}$  for (n, n') reactions
- To establish the influence of the sample's shape on the observable angular distribution we "manually" change the gamma-quanta angular distribution to isotropic.
- To simplify the simulation procedure and increase the simulation speed we replace our 18 gamma-detectors to a single solid ring.



a) Simulation variant with the ring detector



b) Simulation variant with "normal" BGO detectors.

 $\gamma$ -quanta angular distribution for  $14 \times 14 \times 4 \text{ cm}^3$ ,  $E_{\gamma} = 0.8 \text{MeV}$ 



• Red line matchs  $0^{\circ}$ , magenta lines match  $\pm 90^{\circ}$ 

 $\gamma$ -quanta angular distribution for  $4 \times 14 \times 4$  cm<sup>3</sup>,  $E_{\gamma}$ =846.7keV



• Red line matchs  $0^{\circ}$ , magenta lines match  $\pm 90^{\circ}$ 

## Gamma and neutrons absorbtion inside the sample has to be taken into account



- Models of real detectors were used
- Information about angles between neutrons and gammas for each pixel-detector combination obtained from the simulation
- The correction factor for each pixel-detector pair is proportional to the full energy absorbtion peak obtained in the Monte-Carlo calculation

### Angle between neutron and gamma-quantum



- $\cos(\theta) = \frac{(\vec{P_n}, \vec{P_\gamma})}{|\vec{P_n}||\vec{P_\gamma}|}$
- The substrate in these histograms is formed by multiply scattered neutrons and gammas
- Differences in angles between pixels on one vertical strip are not large
- We can sum pixels on each vertical strip to improve statistics in our data. Also the same operation has to be done with correction.

### Correction procedure (Fe, $E_{\gamma}$ =846.7keV,2<sup>+</sup>)





Anisotropy of the  $\gamma$ -radiation emmitted by neutron inelastic scattering on the <sup>56</sup>Fe. Fit:  $1 + (0.162 \pm 0.003)P_2(\cos \theta) - (0.0034 \pm 0.005)P_4(\cos \theta)$ 



Anisotropy of the  $\gamma$ -radiation emmited by neutron inelastic scattering on the <sup>56</sup>Fe. Fit:  $1 + (0.213 \pm 0.005)P_2(\cos \theta) - (0.003 \pm 0.007)P_4(\cos \theta)$ 



Anisotropy of the  $\gamma$ -radiation emmited by neutron inelastic scattering on the <sup>48</sup>Ti. Fit:  $1 + (0.195 \pm 0.004)P_2(\cos \theta) - (0.0019 \pm 0.005)P_4(\cos \theta)$ 



Anisotropy of the  $\gamma$ -radiation emmited by neutron inelastic scattering on the <sup>48</sup>Ti. Fit:  $1 + (0.244 \pm 0.008)P_2(\cos \theta) - (0.027 \pm 0.012)P_4(\cos \theta)$ 

- The optimal size and shape of the targets for different elements were calcuated
- Angular distributions of the gamma-radiation emmited in neutron inelastic scattering on <sup>48</sup>Ti, <sup>56</sup>Fe have been measured, data for other elements is on the way.
- The correction factors were calculated and experimental data was reestimated.
- We would like to fix our previous measurements using calculated correction factors

### Thank you for your attention!

We just have moved the sample ...



• Red line matchs  $0^{\circ}$ , magenta lines match  $\pm 90^{\circ}$ 

### Results: ${}^{16}$ O, $E_{\gamma}$ =3.839 MeV; M1



### Results: ${}^{16}$ O, $E_{\gamma}$ =3.839 MeV; M1



Fit:  $1 + (0.22 \pm 0.03)P_2(\cos\theta)$ 

### Tagged beam profile















(Phoio







170612



with all be







nPoei14 Densis 41 Per



effect 24





104.0

rPixel 15

0





















(bandou al X des)













Density of Street

1914.33 

nPiai 34







### Trajectories of the tagged beams



### Time spectra comparison

